

DESCRIPTON OF THE MEASURE INSTRUMENT

The Measuring Gauge for tooth angles and height difference WB 32 (following Measure Instrument) is a precision optical-mechanical instrument for checking the cutting geometry of circular saw blades.
This instrument is compact and extremly accurate thereby making it ideal for all applications. The unit is maintenance free and extremly simple to operate.
The measuring instrument is supplied in a practical readiness bag. Against small surcharge you receive a suitable wood case.

Versions

Type WB 32 Standard (without dial indicator)
Type WB 32 Universal (special dial gauge with mm-division) Type WB 32 Universal Z (special dial gauge with Zoll-division)

TECHNICAL DATA

- Measure range
- Stroke
- Measuring surface
- Steel parts
- Cylindrical way
- Guidance ratio
- Housing material
- Angle scale

Special dial gauge

- Lens system
- Vision field of the
- Weight
- Dimensions
up to 2400 mm of circular saw blade diameters, for tooth pitch 3... 70 mm (Standard version 0 ... 70 mm) 5 mm , for difference measurement hardened, ground and hard-chromed platet to prevent rust and tarnish polished, in self-lubricating, wear-proof bushings
$3 \times \mathrm{D}$
special precision cast aluminium, anodized aluminium, black anodized, engraved graduations graduation $1 / 100 \mathrm{~mm}$ or $1 / 1000$ Zoll multielement, with 7 fold magnification, free of distortion
18 mm , chromatically corrected magnifying glass
520 g (standard version)
585 g (universal / universal Z version)
$115 \times 105 \times 67 \mathrm{~mm}$

GENERAL INFORMATION

Please observe the notes in these operating instructions, in order that the device will function perfectly and remain operable for a long time.

- Immediately after receipt of the goods that the measuring
instrument not damaged and the ordered accessories are
- present.
- Use the measuring instrument only intended.
- Note the fact that the dial gauge has special translation and therefore only for circular saw blades can be used.
- Make sure during the measurements that the hair cross plate will not damage. If necessary it is available as spare part.

TOOTH GEOMETRY FOR CIRCULAR SAW BLADES

Use of proper tooth geometry assures long blade life and maximum cutting efficiency.

The diagramm indicates the normal tooth geometry for circular saw blades.

T Tooth pitch	γ Cutting angle
t Gullet depth	α Clearance angle
b Gullet diameter	h Tooth height differential

> V Beveled tooth
> N Square tooth
> S Tooth face to coolant channel

TOOTH ANGLE MEASUREMENTS

All measurements for tooth angles should be taken directly from the square teeth as these are more reliable than when taken from the beveled teeth.
\rightarrow Measurement should be taken with the blade held in a clock-wise direction, that is, the teeth pointing to the right.
\rightarrow Place pointer (1) by using lever (2) to the 0 position
\rightarrow Depress lever (3) of the dial indicator (4) downward to lock the measuring edge (5) in its „up" position.
\rightarrow Loosen knurled nuts (6) and adjust the support bars (7) symmetrically according to the tooth pitch. The symmetry can be checked by observing the markings on the guide track for the knurled nuts.

Note: The tooth to me measured must be properly positioned on the support bar surfaces (7).
\rightarrow These surfaces must lie on the tips of the beveled teeth. The

1 Pointer	11 Knurled screw
2 Setting lever	12 Angle scale
8 Magnifying glass	

Caution! Care should be taken not to scratch the cross hair of the lens.

\rightarrow The tooth shape will now appear in lens (8) magnified approximately 7 times.
\rightarrow Line up the horizontal cross hair (9) with the top of the tooth using the knurled screw (11).
\rightarrow Move the instrument sideways until the vertical cross hair (10) lines up with the tooth point.
\rightarrow Adjust lever (2) until the vertical cross hair (10) lines up with the face of the tooth. (II) Cutting angle γ can now be read on the angle scale (12).
\rightarrow Adjust lens (2) in a downward direction until the horizontal cross hair (9) is lined up with the top of the tooth (III). The clearance angle α can now be read on the angle scale (12).
MEASURING THE TOOTH HEIGHT DIFFERENTIAL (only WB 32 universal)
$\rightarrow \quad$ Release lever (3) of the dial indicator (4).
$\rightarrow \quad$ Place the support bars (7) of the instrument vertically on the tips of the beveled teeth (see illustration).
Caution! Care should be taken not to scratch the cross hair of the lens. Note: Measuring edge (5) of the dial indicator (4) must be positioned on the top of the square tooth.
\rightarrow Set the dial indicator (4) in position 0.
\rightarrow Next place the instrument on the tips of the two square teeth. (7)

\rightarrow The height differential of the beveled and square teeth can now be read directly on the dial indicator (4).

